

European Technical Assessment

ETA 12/0107 of 19/04/2021

(English language translation, the original version in Czech language)

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Trade name of the construction product

CELO Injection System

ResiFIX EYSF

ResiFIX EYSF Tropical ResiFIX EYSF Express

Product family to which the construction product belongs Product area code: 33

Bonded injection type anchor for use in

uncracked concrete

Manufacturer

CELO Befestigungssysteme GmbH Industriestraße 6

86551 Aichach Germany

Manufacturing plant(s)

Plant 2

This European Technical Assessment contains

15 pages including 12 Annexes which form

an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

EAD 330499-01-0601 Bonded fasteners for use in concrete

This version replaces

ETA 12/0107 issued on 24/03/2017

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The CELO Injection System ResiFIX EYSF, ResiFIX EYSF Tropical and ResiFIX EYSF Express modified Epoxy acrylate resin without styrene for uncracked concrete is a bonded anchor consisting of a cartridge with injection mortar and a steel element. The steel elements consists of a commercial threaded rods, a hexagon nut and a washer. The steel elements are made of galvanized steel or stainless steel.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	Annex C1, C2
(static and quasi-static loading)	Affilex C1, C2
Characteristic resistance to shear load	Annex C1, C3
(static and quasi-static loading)	Affrex C1, C3
Displacements under short term and long term loading	Annex C4
Durability	Annex B1
Characteristic resistance and displacements	NPA
for seismic performance categories C1 and C2	INI A

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU)

No 305/2011) given in the following table applies.

Product	Intended use	Level or	System
		class	
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the construction works) or heavy units	-	1

Official Journal of the European Communities L 254 of 08.10.1996

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

5.1 Tasks of the manufacturer

The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

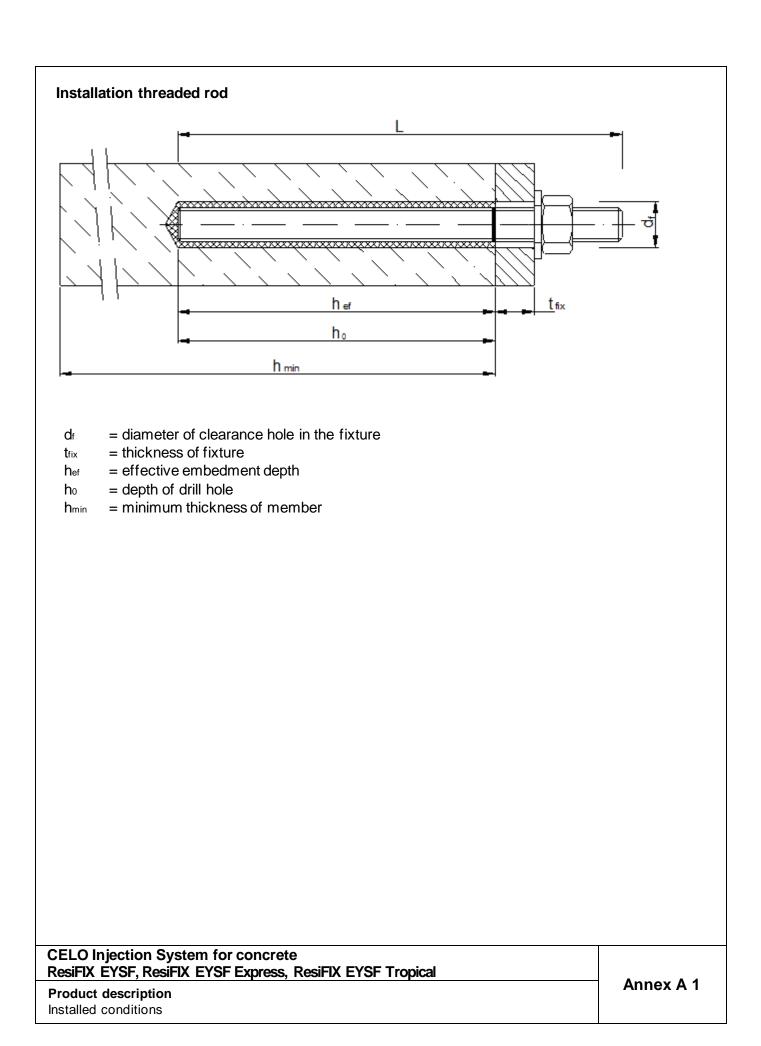
5.2 Tasks of the notified bodies

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The notified certification body involved by the manufacturer shall issue an certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical assessment.

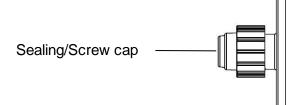
In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled the notified body shall withdraw the certificate of constancy of performance and inform Technický a zkušební ústav stavební Praha, s.p without delay.

Issued in Prague on 19.04.2020

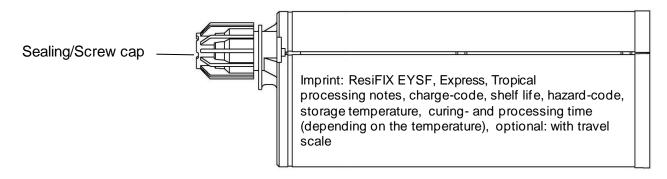

Ву

Ing. Mária Schaan

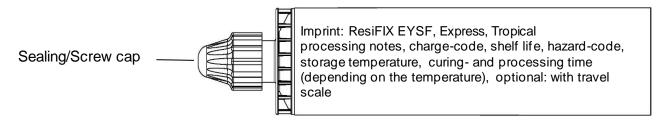
Head of the Technical Assessment Body


Page 3/15 of ETA 12/0107 issued on 19/04/2021 and replacing ETA 12/0107 issued on 24/03/2017 English translation by TZÚS Prague – branch TIS

The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.


Cartridge: ResiFIX EYSF, Express, Tropical

150 ml, 280 ml, 300 ml up to 330 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



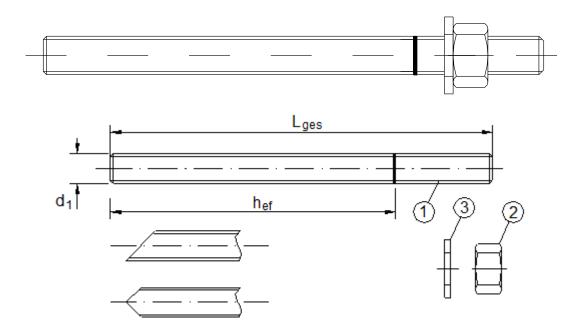
Imprint: ResiFIX EYSF, Express, Tropical processing notes, charge-code, shelf life, hazard-code, storage temperature, curing- and processing time (depending on the temperature), optional: with travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

165 ml and 300 ml cartridge (Type: "foil tube")

Static mixer

SM 14W



CELO Injection System for concrete
ResiFIX EYSF, ResiFIX EYSF Express, ResiFIX EYSF Tropical

Product description
Injection system

Annex A 2

Threaded rod M8, M10, M12, M16, M20, M24 with washer and hexagon nut

Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

CELO Injection System for concrete ResiFIX EYSF, ResiFIX EYSF Express, ResiFIX EYSF Tropical

Annex A 3

Product description
Threaded rod

	Γable A1: Materials	<u>, </u>				
	Designation	Material				
	eel, zinc plated (Steel acc. to EN 10 c plated ≥ 5 µm acc. to EN ISO 4042				nd	
	ISO 10684:2004+AC:2009 or shera				iiu	
				f_{uk} =400 N/mm ² ; f_{yk} =240 N/mm ² ; $A_5 > 8$	8% fracture elongatio	
		Property class		f _{uk} =400 N/mm²; f _{yk} =320 N/mm²; A ₅ > 8		
	Anchor rod	acc. to		$f_{uk}=500 \text{ N/mm}^2$; $f_{yk}=300 \text{ N/mm}^2$; $A_5 > 8$		
		EN ISO 898-1:2013	5.8	f_{uk} =500 N/mm ² ; f_{yk} =400 N/mm ² ; $A_5 > 8$	8% fracture elongatio	
			8.8	f_{uk} =800 N/mm ² ; f_{yk} =640 N/mm ² ; $A_5 > 8$	8% fracture elongatio	
		Property class	4	for anchor rod class 4.6 or 4.8		
<u> </u>	Hexagon nut	acc. to	5	for anchor rod class 5.6 or 5.8		
	_	EN ISO 898-2:2012	8	for anchor rod class 8.8		
	Washer, (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Steel, zinc plated, hot-	dip ga	alvanised or sherardized		
Sta	ninless steel A2 (Material 1.4301 / 1	.4311 / 1.4307 / 1.4567	or 1.	4541,acc. to EN 10088-1:2014)		
n		4404/4 4574/4 4000	a= 4	4570 000 to FN 40000 4:004 th		
Σŧ	ninless steel A4 (Material 1.4401 / 1				20/ fracture also sets	
	Anchor rod 1)	Property class acc. to		f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 8$ f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; $A_5 > 8$		
	, and to the second sec	EN ISO 3506-1:2009	80	f_{uk} =800 N/mm ² ; f_{yk} =600 N/mm ² ; $A_5 > 8$		
		Don a subsula su	50		5% fracture elorigation	
	Hexagon nut 1)	Property class acc. to		for anchor rod class 70		
	Tiexagoirnat	EN ISO 3506-1:2009				
	Washer,	A D: Matarial 4 4204 4			000 4.0044	
	(e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	A4: Material 1.4401, 1.	4404	/ 1.4307 / 1.4567 or 1.4541, EN 10 - / 1.4571 / 1.4362 or 1.4578, EN 10		
H	nh corrosion resistance steel (Mate	1		•	20/ (
	Anaharrad	Property class	$\frac{50}{70}$ f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A ₅ > 8% fracture elongation $\frac{50}{70}$ f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ² ; A ₅ > 8% fracture elongation			
	Anchorrod	acc. to EN ISO 3506-1:2009		·		
			50	f_{uk} =800 N/mm ² ; f_{yk} =600 N/mm ² ; $A_5 > 8$ for anchor rod class 50	3% fracture elongation	
	Hexagon nut	Property class acc. to		for anchor rod class 70		
	Tiexagoirilat	EN ISO 3506-1:2009		for anchor rod class 80		
	Washer.		80	Tot afferior fou class 80		
	(e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4529 or 1.45	565, a	acc. to EN 10088-1:2014		
s	trength class 80 only for stainless ste	el A4 + high corrosion r	esista	ance steel HCR		
		· ·				
	ELO Injection System for co					
	ELO Injection System for co esiFIX EYSF, ResiFIX EYSF Ex		Tro	ppical		
R			Tro	ppical	Annex A 4	

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loads

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- · Uncracked concrete

Temperature range:

- T1: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- T2: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel class A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel class A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement
 or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with EN 1992-4

Concrete condition:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete
- · I2 installation in water-filled drill holes (not sea water) and use in service in dry or wet concrete

Installation:

- Hole drilling by hammer or compressed air drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 - Downward and horizontal and upwards (e.g. overhead) installation.

CELO Injection System for concrete ResiFIX EYSF, ResiFIX EYSF Express, ResiFIX EYSF Tropical	
Intended use Specifications	Annex B 1

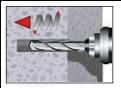
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24
Nominal drill hole diameter	do [mm] =	10	10 12 14 18 24		24	28	
Effective anchorage depth	hef,min [mm] =	60	60	70	80	90	96
Errective anchorage depth	hef,max [mm] =	160	200	240	320	400	480
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26
Maximum torque moment	Tinst [Nm] ≤	Nm] ≤ 10 20		40	80	120	160
Thickness of fixture	tfix,min [mm] >	0					
THICKNESS OF TIXTURE	tfix,max [mm] <	1500					
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm		hef + 2d ₀			
Minimum spacing	Smin [mm]	40	50	60	80	100	120
Minimum edge distance	Cmin [mm]	40	40 50 60 80		100	120	

Steel brush RBT

Table B2: Parameter cleaning and setting tools

Threaded Rod	d₀ Drill bit - Ø	d₀ Brush - Ø (mm)		d _{b,min} min. Brush - Ø
(mm)	(mm)			(mm)
M8	10	RBT10	12	10,5
M10	12	RBT12	14	12,5
M12	14	RBT14	16	14,5
M16	18	RBT18	20	18,5
M20	24	RBT24	26	24,5
M24	28	RBT28	30	28,5

Hand pump (volume 750 ml)


Drill bit diameter (d_o): 10 mm to 20 mm and anchorage depth up to 240 mm


Recommended compressed air tool (min 6 bar) All applications

CELO Injection System for concrete ResiFIX EYSF, ResiFIX EYSF Express, ResiFIX EYSF Tropical	
Intended use	Annex B 2
Installation parameters	
Cleaning and setting tools	

Installation instructions



Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1). In case of aborted drill hole: the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B2) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

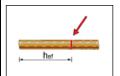
The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.

For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) must be used.

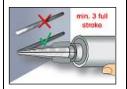
Check brush diameter (Table B2) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > db,min (Table B2) a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension

shall be used (Table B2).

Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B2) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

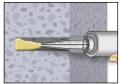

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) must be used.

or


After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again

3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended working time (Table B3) as well as for new cartridges, a new static-mixer shall be used.

Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.



5. Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

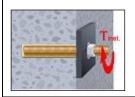
CELO Injection System for concrete	
ResiFIX EYSF, ResiFIX EYSF Express, ResiFIX EYSF Tropical	
Intended use Installation instructions	Annex B 3

Installation instructions (continuation)

times given in Table B3.

Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).

6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to


distribution of the adhesive until the embedment depth is reached.

The anchor should be free of dirt, grease, oil or other foreign material.

approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working

Push the threaded rod into the anchor hole while turning slightly to ensure positive

- 00:45
- Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B3).

10. After full curing, the add-on part can be installed with the max. torque (Table B1) by using a calibrated torque wrench.

Table B3: Minimum curing time

Concrete ResiFIX EYSF Tropical			ResiFI	EYSF	ResiFIX EYSF Express		
temperature	Max. working time	Min. curing time	Max. working time	Min. curing time	Max. working time	Min. curing time	
-10 to -6 °C					60 min	4 h	
-5 to -1 °C			90 min	6 h	45 min	2 h	
0 to +4 °C			45 min	3 h	25 min	80 min	
+5 to +9 °C			25 min	2 h	10 min	45 min	
+10 to +14 °C	30 min	5 h	20 min	100 min	4 min	25 min	
+15 to +19 °C	20 min	210 min	15 min	80 min	3 min	20 min	
+20 to +29 °C	15 min	145 min	6 min	45 min	2 min	15 min	
+30 to +34 °C	10 min	80 min	4 min 25 min				
+35 to +39 °C	6 min	45 min	2 min	20 min			
+40 to +44 °C	4 min	25 min					
+45 °C	2 min	20 min		_			
Cartridge temperature	+5°C to	+45°C	+5°C to +40°C		0°C to	+30°C	

CELO Injection System for concrete	
ResiFIX EYSF, ResiFIX EYSF Express, ResiFIX EYSF Tropical	
Intended use	Annex B 4
Installation instructions (continuation)	
Curing time	

Size				M 8	M 10	M 12	M 16	M 20	M24
Cros	s section area	As	[mm ²]	36,6	58	84,3	157	245	353
Cha	racteristic tension resistance, Steel failure 1)								
	, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141
	Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176
Stee	, Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282
Stair	less steel A2, A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177
Stair	less steel A2, A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247
Stair	less steel A4 and HCR, Property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Cha	racteristic tension resistance, Partial safety factor 2)								
Stee	, Property class 4.6	γMs,N	[-]			2	2,0		
Steel, Property class 4.8 $\gamma_{Ms,N}$ [-]					,5				
Stee	, Property class 5.6	γMs,N	[-]			2	2,0		
Stee	, Property class 5.8	γMs,N	[-]			1	,5		
Stee	, Property class 8.8	γMs,N	[-]			1	,5		
Stainless steel A2, A4 and HCR, Property class 50 γ _{Ms,N} [-]					2,	86			
Stainless steel A2, A4 and HCR, Property class 70 $\gamma_{Ms,N}$ [-] 1,8					87				
Stair	less steel A4 and HCR, Property class 80	γMs,N	[-]			1	,6		
Chai	racteristic shear resistance, Steel failure 1)								
_	Steel, Property class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	9 (8)	14 (13)	20	38	59	85
Without lever arm	Steel, Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	9 (8)	15 (13)	21	39	61	88
	Steel, Property class 8.8	$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141
	Stainless steel A2, A4 and HCR, Property class 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88
Wit	Stainless steel A2, A4 and HCR, Property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124
	Stainless steel A4 and HCR, Property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560
ever	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896
With lever arm	Stainless steel A2, A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561
>	Stainless steel A2, A4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784
	Stainless steel A4 and HCR, Property class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896
	racteristic shear resistance, Partial safety factor 2)		1 1						
	, Property class 4.6	γMs,V	[-]				67		
	, Property class 4.8	γMs,V	[-]				25		
	, Property class 5.6	γMs,V	[-]				67		
	, Property class 5.8 , Property class 8.8	γMs,V γMs,V	[-]				25 25		
	less steel A2, A4 and HCR, Property class 50 50		[-]						
	<u> </u>	γMs,V γMs,V	[-]				38		
	less steel A2, A4 and HCR, Property class 50 70 less steel A4 and HCR, Property class 80	γMs,V	[-] [-]				56 33		
1) V h	alues are only valid for the given stress area A _s . Values in of dipped threaded rods galvanized according to EN ISO 1 absence of national regulation	brackets are	/alid for un	dersized	th readed r			ess area A	₹s for
Re Pe	ELO Injection System for concrete siFIX EYSF, ResiFIX EYSF Express, ResiFIX erformances		opical				Aı	nnex C	: 1

and steel shear resistance of threaded rods

Anchor size threaded ro	od			M 8	M 10	M 12	M 16	M 20	M24
Steel failure			<u>'</u>	•				•	•
Characteristic tension res	sistance	$N_{Rk,s}$	[kN]		A	A₅•fuk (orse	ee Table C1))	
Partial factor		γMs,N	[-]			see Ta	ble C1		
Combined pull-out an	d concrete cone fail	ure							
Characteristic bond resis	tance in un cracked conc	rete C20/25	5						
Temperature range I: 40°C/24°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	8,5	8,0	8,0	8,0	8,0	8,0
	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,5	8,0	8,0	8,0	8,0	8,0
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	6,5	6,0	6,0	6,0	6,0	6,0
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	6,5	6,0	6,0	6,0	6,0	6,0
	•	C2	25/30			1,0	04	<u> </u>	
		C3	30/37	1,08					
In creasing factors for cor	ocrete	C3	35/45	1,13					
Ψ¢		C4	C40/50 1,15			15			
		C4	5/55	1,17					
		C5	60/60			1,1	19		
Concrete cone failure			 						
Factor		k _{ucr,N}	[-]	11,0					
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}					
Axial distance		S _{cr,N}	[mm]	2 C _{cr,N}					
Splitting failure									
	h/h _{ef} ≥2,0					1,0	1		
Edge distance	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]	$2 \cdot h_{\scriptscriptstyle e\!f} \! \left(2, \! 5 \! - \! rac{h}{h_{\scriptscriptstyle e\!f}} ight)$					
	h/h < 1.2								
Axial distance	h/h _{ef} ≤ 1,3	S _{cr,sp}	[mm]	2,4 h _{ef} 2 c _{cr,sp}					
Installation factor		~ 01,5₽	[]			200	J1,3P		
for dry and wet concrete		V:	[-]	1,2					
		γinst							
for flooded bore hole		γinst	[-]	1,2					

			М 8	M 10	M 12	M 16	M 20	M24		
Steel failure without lever arm		•			1					
Characteristic shear resistance Steel, strength class 4.6 and 4.8 $V^0_{\rm Rk,s} \hspace{1cm} [kN]$				0,6 • A _s • f _{uk} (or see Table C1)						
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	$V^0_{Rk,s}$ [kN] 0,5 • A _s • f _{uk} (or see Tab					le C1)			
Partial factor	γMs,V	[-]	see Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	1,2 • W _{el} • f _{uk} (or see Table C1)							
Partial factor	γMs,V	[-]			see Ta	able C1				
Concrete pry-out failure										
Factor	k ₈	[-]			2	,0				
Installation factor	γinst	[-]			1	,0				
Concrete edge failure										
Effective length of fastener	I _f	[mm]	$I_f = min(h_{ef}; 12 d_{nom})$							
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24		
Installation factor	γinst	[-]	1,0					I.		

l able C4: Displacement under tension load								
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24
Uncracked concrete C20/25								
Temperature range I: 40°C/24°C	δ _{N0} -factor	[mm/(N/mm²)]	0,03	0,04	0,05	0,07	0,08	0,10
	δ _{N∞} -factor	[mm/(N/mm²)]	0,07	0,08	0,08	0,08	0,08	0,10
Tomporatura range II.	δ_{N0} -factor	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,04	0,05
Temperature range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,15	0,17	0,17	0,17	0,17	0,17

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-factor} \ \cdot \tau; \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty}\text{-factor} \ \cdot \tau; \end{split}$$

Table C5: Displacement under shear load¹⁾

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24
For uncracked concrete C20/25								
All temperature ranges	δ_{V0} -factor	[mm/kN]	0,02	0,02	0,01	0,01	0,01	0,01
	δ _{V∞} -factor	[mm/kN]	0,03	0,02	0,02	0,01	0,01	0,01

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor } \cdot V;$

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \, \cdot \, V;$

CELO Injection System for concrete ResiFIX EYSF, ResiFIX EYSF Express, ResiFIX EYSF Tropical	
Performances Displacement	Annex C 4