

Expert Services

Kivimiehentie 4 FI-02150 Espoo, FINLAND www.eurofins.fi/expertservices

European Technical Assessment ETA 10/0280 of 15/07/2020

I General Part

Technical Assessment Body issuing the ETA	Eurofins Expert Services Oy
Trade name of the construction product	CELO Quick fix anchor BAZ, BAZ HD, BAZ A4, BAZ HCR
Product family to which the construction product belongs	Torque controlled expansion anchors of sizes M8, M10, M12 and M16 for use in concrete
Manufacturer	CELO Befestigungssysteme GmbH Industriestrasse 6 D-86551 Aichach Germany
	www.celofixings.com
Manufacturing plant	CELO Plant 7
This European Technical Assessment contains	14 pages including 11 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330232-00-0601
This ETA replaces	ETA 10/0280, issued on September 8, 2016

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full excepted the confidential Annex(es) referred to above. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such. This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

II Specific Part

1. Technical description of the product

The CELO Quick fix anchor BAZ is an anchor made of galvanized steel (designated as BAZ). The CELO Quick fix anchor BAZ HD is an anchor made of hot dip galvanized steel (designated as BAZ HD). The CELO Quick fix anchor BAZ A4 is an anchor made of stainless steel (designated as BAZ A4). The CELO Quick fix anchor BAZ HCR is an anchor made of high corrosion resistant stainless steel (designated as BAZ HCR). The anchors are made in sizes M8, M10, M12 and M16. Anchors are placed into a drilled hole and anchored by torque-controlled expansion.

The illustration and description of the product are given in Annexes A.

2. Specification of the intended use in accordance with the applicable European Assessment Document, EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European technical assessment are based on an assumed working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic tension resistance for static and quasi-static action acc. EN 1992-4:2018 or EOTA TR 055:2018-02	See Annex C1
Characteristic shear resistance for static and quasi-static action acc. EN 1992-4:2018 or EOTA TR 055:2018-02	See Annex C2
Characteristic resistance for Seismic Performance Category C1	See Annex C6
Displacements under static and quasi-static action	See Annex C5

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Characteristic tension resistance under fire exposure	See Annex C3
Characteristic shear resistance under fire exposure	See Annex C4

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European technical assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

3.5 Protection against noise (BWR5):

Not relevant.

3.6 Energy economy and heat retention (BWR6):

Not relevant.

3.7 Sustainable use of natural resources (BWR7)

The sustainable use of natural resources was not investigated.

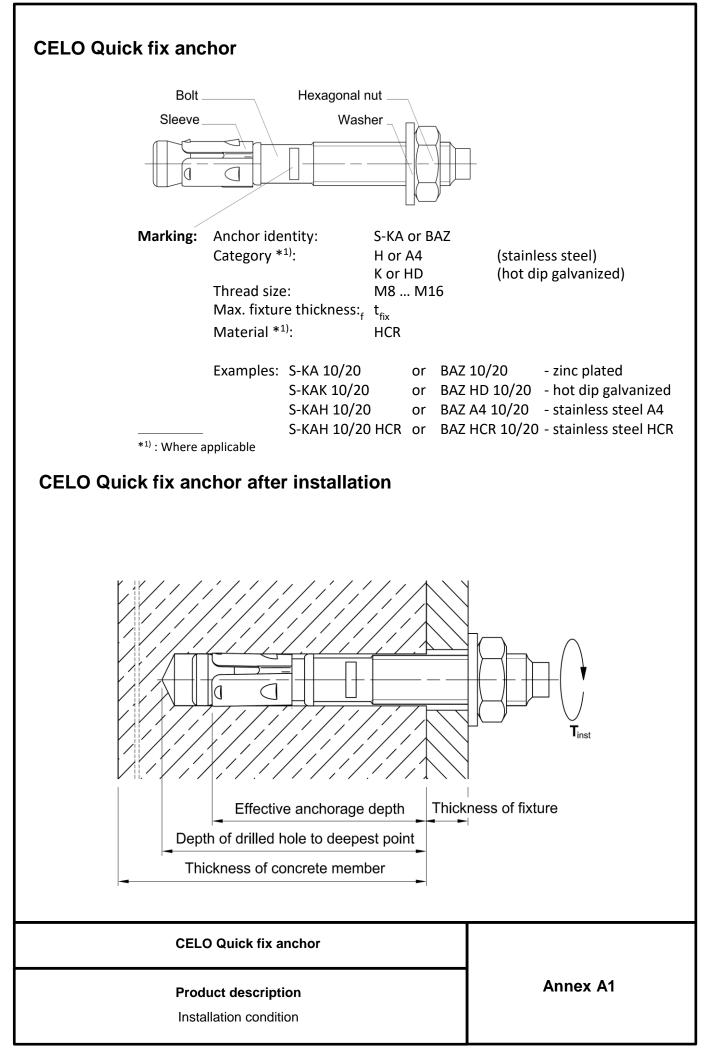
3.8 General aspects relating to fitness for use

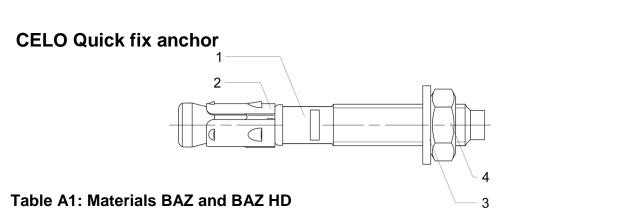
Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4. Assessment and verification of constancy of performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is System 1.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Eurofins Expert Services Oy.


Issued in Espoo on July 15, 2020 by Eurofins Expert Services Oy

Tiina Ala-Outinen Business Development Manager Saija Korpijaakko Expert, Product Certification

1

Official Journal of the European Communities L 254 of 08.10.1996

Table A1: Materials BAZ and BAZ HD

Part	Designation	Diameter	Material ^{1) 2)}
1	Bolt	M8 - M16	Cold forged steel, EN 10263-2
2	Sleeve	M8 - M16	Cold rolled galvanized steel strip, EN 10346
3	Washer	M8 - M16	Electroplated steel, DIN 125 (EN ISO 7089), DIN 440 (EN ISO 7094), DIN 9021 (EN ISO 7093)
4	Hexagonal Nut	M8 - M16	Steel, electroplated, property class 8, DIN 934 (EN ISO 4032)

¹⁾ **BAZ:** Parts 1, 3 and 4 are zinc electroplated according to EN ISO 4042 \ge 5µm and bright passivated ²⁾ **BAZ HD:** Parts 1, 3 and 4 are hot dip galvanized > 50 µm mean thickness according to EN ISO 10684

Table A2: Materials BAZ A4

Part	Designation	Diameters	Material
1	Bolt	M8 - M16	Cold forged stainless steel, EN 10088-3
2	Sleeve	M8 - M16	Stainless steel strip, EN 10088-2
3	Washer	M8 - M16	Stainless steel, DIN 125 (EN ISO 7089), DIN 440 (EN ISO 7094), DIN 9021 (EN ISO 7093)
4	Hexagonal Nut	M8 - M16	Stainless steel, property class 80, DIN 934 (EN ISO 4032)

Table A3: Materials BAZ HCR

Part	Designation	Diameters	Material
1	Bolt	M8 - M16	Cold forged stainless steel, EN 10088-3, 1.4529 / 1.4565
2	Sleeve	M8 - M16	Stainless steel strip, EN 10088-2
3	Washer	M8 - M16	Stainless steel, W 1.4529 / 1.4565, DIN 125 (EN ISO 7089), DIN 440 (EN ISO 7094), DIN 9021 (EN ISO 7093)
4	Hexagonal Nut	M8 - M16	Stainless steel, property class 70, W 1.4529 / 1.4565 DIN 934 (EN ISO 4032)

CELO Quick fix anchor

Product description

Annex A2

Materials

Specifications of intended use

Anchorages subject to:

- Static, quasi-static loads
- Seismic actions for Performance Category C1
- Fire exposure

Base materials:

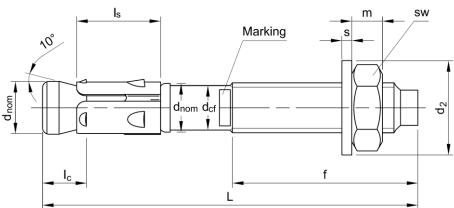
- Cracked and non-cracked concrete
- Reinforced or unreinforced normal weight concrete of strength classes C20/25 to C50/60 according to EN 206.

Use conditions (Environmental conditions):

- The BAZ and BAZ HD anchors may only be used in structures subject to dry indoor conditions, indoor with temporary condensation.
- The BAZ A4 anchors may be used in concrete subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist.
- The BAZ HCR anchors may be used in concrete subject to dry internal conditions and also in concrete subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions.

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:


- The anchorages are designed in accordance with EN 1992-4:2018 or EOTA TR 055:2018-02 under the responsibility of an engineer experienced in anchorages and concrete work.
- For seismic application the anchorages are designed in accordance with EOTA TR 045 "Design of Metal Anchors For Use In Concrete Under Seismic Actions".
- For application with resistance under fire exposure the anchorages are designed in accordance with the method given in EOTA TR 020 "Evaluation of Anchorage in Concrete concerning Resistance to Fire".
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

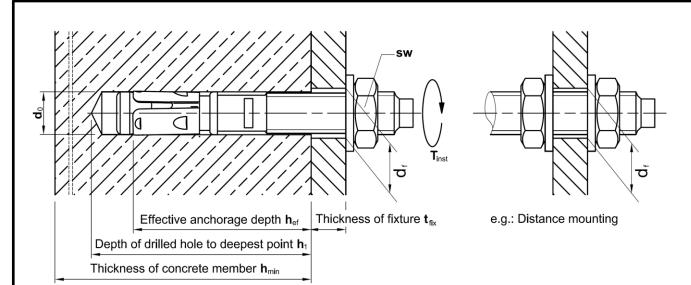
Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Effective anchorage depth, edge distances and spacings not less than the specified values without minus tolerances.
- Hole drilling by hammer drill.
- Cleaning of the hole of drilling dust
- Application of specified torque moment using a calibrated torque tool
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength non-shrinkage mortar. No shear or oblique tension loads are allowed in the direction of a not filled aborted hole.

CELO Quick fix anchor
Intended Use
Specifications
Annex B1

CELO Quick fix anchor

Table B1: Dimensions of the anchor


Main d	imensions	Stud	bolt	Cone	bolt	Expansion sleeve	Washer		Hexagonal nut		
Size	L [mm]	f [mm]	d_{cf} [mm]	d _{nom} [mm]	l _c [mm]	l₅ [mm]	s [mm]	d 1 [mm]	d ₂ [mm]	SW [mm]	m [mm]
M8	62420	22220	7,1	8	20,9	15,9	≥1,6	≥8,4	≥16	13	≥6,5
M10	82420	37215	9,0	10	25,7	17,9	≥2,0	≥10,5	≥20	≥16	≥8,0
M12	98420	48210	10,8	12	30,3	19,1	≥2,5	≥13,0	≥24	≥18	≥10,0
M16	118420	60202	14,6	16	38,1	26,3	≥3,0	≥17,0	≥30	24	≥13,0

CELO Quick fix anchor

Intended Use

Anchor dimensions

Annex B2

Table B2: Installation data

	M8 M10 M12 M16 do [mm] 8 10 12 16					
CELO Quick fix anchor			M8	M10	M12	M16
Drill hole diameter	do	[mm]	8	10	12	16
Cutting diameter at the upper tolerance limit (maximum diameter bit)	d _{cut,max} ≤	[mm]	8,45	10,45	12,5	16,5
Depth of drilled hole to deepest point	h₁ ≥	[mm]	60	75	90	110
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	14	18
Thickness of fixture	t _{fix,max}	[mm]	358	338	322	302
Width across flats	SW	[mm]	13	≥16	≥18	24
Required BAZ / BAZ HD	T _{inst}	[Nm]	20 / 15 ¹⁾	35	50	120
torque BAZ A4 / BAZ HCR	I inst		20	35	70	120

¹⁾ Installation torque for BAZ is 20 Nm and for BAZ HD 15 Nm

Table B3: Minimum thickness of concrete member, spacing and edge distance

CELO Quick fix anchor			Anchor size						
			M10	M12	M16				
h _{min}	[mm]	100	120	140	170				
Smin	[mm]	50	55	60	70				
c≥	[mm]	50	80	90	120				
Cmin	[mm]	50	50	55	85				
s ≥	[mm]	50	100	145	150				
	h _{min} S _{min} C ≥ C _{min}	h _{min} [mm] S _{min} [mm] C ≥ [mm] C _{min} [mm]	M8 hmin [mm] 100 Smin [mm] 50 c ≥ [mm] 50 cmin [mm] 50	M8 M10 hmin [mm] 100 120 smin [mm] 50 55 c ≥ [mm] 50 80 cmin [mm] 50 50	M8 M10 M12 hmin [mm] 100 120 140 smin [mm] 50 55 60 $c \ge$ [mm] 50 80 90 c_{min} [mm] 50 50 55				

intervalues may be interpolated linearly

CELO Quick fix anchor

Intended Use

Installation data

Annex B3

Table C1:Characteristic resistances under tension loads in case of static and
quasi-static loading for design according to EN 1992-4:2018 or
EOTA TR 055:2018-02

				Anch	or size	1	
CELO Quick fix ancho	M8	M10	M12	M16			
Steel failure					<u> </u>		
Characteristic resistance BAZ / BAZ HD	N _{Rk,s}	[kN]	13	26	38	69	
Characteristic resistance BAZ A4 / BAZ HCR	N _{Rk,s}	[kN]	15	24	35	75	
Partial safety factor	γ _{Ms} 1)	[-]		1	,4		
Pull-out failure							
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5	9	12	20	
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]	9	16	20	35	
		C25/30	1,06				
		C30/37	1,11				
Increasing factor for N _{Rk,p}	Ψc	C35/45	1,14				
increasing factor for NRk,p		C40/50	1,20				
		C45/55	1,25				
		C50/60	1,31				
Partial safety factor	γinst ¹⁾	[-]		1,2 1,			
	γМр	[-]		1,8 ²⁾		1,5 ³⁾	
Concrete cone and splitting failure							
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85	
Factor for cracked concrete	k _{cr}	[-]		7	7,7		
Factor for non-cracked concrete	k _{ucr}	[-]		1	1,0		
Spacing	S _{cr,N}	[mm]	135	180	210	255	
Edge distance	C _{cr,N}	[mm]	68	90	105	128	
Spacing (splitting)	S _{cr,sp}	[mm]	180	240	280	340	
Edge distance (splitting)	C _{cr,sp}	[mm]	90	120	140	170	
	γinst ¹⁾	[-]		1,2		1,0	
Partial safety factor	γмс γмsp	[-]		1,8 ²⁾		1,5 ³⁾	

¹⁾ In absence of other national regulations

 $^{2)}$ The installation safety factor of γ_{inst} = 1,2 is included

 $^{3)}$ The installation safety factor of γ_{inst} = 1,0 is included

CELO Quick fix anchor

Performance

Characteristic resistance under tension loads

Annex C1

Table C2:Characteristic resistances under shear loads in case of static and
quasi-static loading for design according to EN 1992-4:2018 or
EOTA TR 055:2018-02

				Anche	or size	
CELO Quick fix anchor			M8	M10	M12	M16
Steel failure without lever arm						1
Characteristic resistance BAZ / BAZ HD	V _{Rk,s}	[kN]	10	18	23	44
Characteristic resistance BAZ A4 / BAZ HCR	V _{Rk,s}	[kN]	11	17	25	47
Partial safety factor	γMs ¹⁾	[-]		1,	25	•
Factor for considering ductility	k 7	[-]		1	,0	
Steel failure with lever arm						
Characteristic resistance BAZ / BAZ HD	M ⁰ Rk,s	[Nm]	21	48	72	186
Characteristic resistance BAZ A4 / BAZ HCR	M ⁰ Rk,s	[Nm]	22	45	79	200
Partial safety factor	γ _{Ms} 1)	[-]	1,25			
Concrete pryout failure						
k-factor	k ₈	[-]	1		2	
Partial safety factor	γмс ¹⁾	[-]		1	,5	
Concrete edge failure						
Effective length of anchor under shear load	lf	[mm]	45	60	70	85
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16
Cracked concrete without any edge reinforcement				1	,0	
Cracked concrete with straight edge reinforcement > Ø12 mm	$\psi_{\text{re,V}}$	[-]		1	,2	
Cracked concrete with edge reinforcement and closely spaced stirrups (a ≤ 100mm) or non-cracked concrete			1,4			
Partial safety factor	γMc ¹⁾	[-]		1	,5	

¹⁾ In absence of other national regulations

CELO Quick fix anchor

Performance

Characteristic resistance under shear loads

Annex C2

Table C3:Characteristic resistances under tension loads in case of fire exposure
for design according to EN 1992-4:2018 or EOTA TR 055:2018-02

					Anch	nor size			
CELO Quick fix anchor					M10	M12	M16		
Steel failure									
		R30	[kN]	1,3	2,3	3,6	5,3		
	BAZ /	R60	[kN]	0,7	1,3	2,0	3,0		
	BAZ HD	R90	[kN]	0,4	0,8	1,3	1,8		
Characteristic resistance		R120	[kN]	0,3	0,5	0,9	1,3		
N _{Rk,s,fi}		R30	[kN]	5,7	9,1	13,2	24,5		
	BAZ A4 /	R60	[kN]	3,9	6,1	8,9	16,6		
	BAZ HCR	R90	[kN]	2,0	3,2	4,7	8,7		
		R120	[kN]	1,1	1,8	2,6	4,8		
Pull-out failure									
		R30	[kN]	1,3	2,3	3,0	5,0		
Characteristic resistance	BAZ /	R60	[kN]	1,3	2,3	3,0	5,0		
N _{Rk,p,fi}	BAZ HD	R90	[kN]	1,3	2,3	3,0	5,0		
		R120	[kN]	1,0	1,8	2,4	4,0		
		R30	[kN]	1,3	2,3	3,0	5,0		
Characteristic resistance	BAZ A4 /	R60	[kN]	1,3	2,3	3,0	5,0		
N _{Rk,p,fi}	BAZ HCR	R90	[kN]	1,3	2,3	3,0	5,0		
		R120	[kN]	1,0	1,8	2,4	4,0		
Concrete cone and splittin	g failure ¹⁾			-					
		R30	[kN]	2,4	5,0	7,4	12,0		
Characteristic resistance N ⁰ F		R60	[kN]	2,4	5,0	7,4	12,0		
Characteristic resistance IN*	κκ,σ,π	R90	[kN]	2,4	5,0	7,4	12,0		
		R120	[kN]	2,0	4,0	5,9	9,6		
Spacing		Scr,N,fi	[mm]		4	x h _{ef}			
Spacing		Smin	[mm]	50	55	60	70		
		Ccr,N,fi	[mm]		2	x h _{ef}			
Edge distance						e side: c _{min}			
		C _{min}	[mm]			pre than on	e side:		
¹⁾ Δs a rule, splitting failure c) mm and				

¹⁾ As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed

Design under fire exposure is performed according to the design method given in EOTA TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in EOTA TR 020 § 2.2.1.

In the absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1,0 is recommended.

CELO Quick fix anchor

Performance

Annex C3

Characteristic tension resistance under fire exposure

Table C4:Characteristic resistances under shear loads in case of fire exposure for
design according to EN 1992-4:2018 or EOTA TR 055:2018-02

						Anchor size			
CELO Quick fix anchor M8				M8	M10				
Steel failure without lever a	m								
		R30	[kN]	1,3	2,3	3,6	5,3		
	BAZ /	R60	[kN]	0,7	1,3	2,0	3,0		
	BAZ HD	R90	[kN]	0,4	0,8	1,3	1,8		
Characteristic resistance		R120	[kN]	0,3	0,5	0,9	1,3		
/ _{Rk,s,fi}		R30	[kN]	5,7	9,1	13,2	24,5		
	BAZ A4 / BAZ HCR	R60	[kN]	3,9	6,1	8,9	16,6		
		R90	[kN]	2,0	3,2	4,7	8,7		
		R120	[kN]	1,1	1,8	2,6	4,8		
Steel failure with lever arm	-	1	1		1				
		R30	[Nm]	1,8	3,6	6,4	16,2		
	BAZ /	R60	[Nm]	1,3	2,6	4,6	11,7		
	BAZ HD	R90	[Nm]	0,8	1,6	2,8	7,2		
Characteristic resistance		R120	[Nm]	0,6	1,1	1,9	4,9		
^{∬0} Rk,s,fi		R30	[Nm]	5,8	11,7	20,4	52,0		
	BAZ A4 /	R60	[Nm]	4,0	7,9	13,9	35,2		
	BAZ HCR	R90	[Nm]	2,1	4,2	7,3	18,5		
<u> </u>		R120	[Nm]	1,1	2,3	4,0	10,2		
Concrete pryout failure									
k-factor		k ₈	[-]	1		2			
		R30	[kN]	2,4	10,0	14,8	24,0		
Characteristic resistance VRK,c	n fi	R60	[kN]	2,4	10,0	14,8	24,0		
	р,п	R90	[kN]	2,4	10,0	14,8	24,0		
		R120	[kN]	2,0	8,0	11,8	19,2		
The initial value V ⁰ _{Rk,c,fi} of the c nay be determined by:							exposure		
Concrete edge failureThe initial value $V^{0}_{Rk,c,fi}$ of the cmay be determined by: $V^{0}_{Rk,c,fi} = 0,25$ with $V^{0}_{Rk,c}$ initial value of the chtemperature.Design under fire exposure is pUnder fire exposure usually crassing 2.2.1.EOTA TR 020 covers design foredge distance must be increasedn the absence of other national1,0 is recommended.	x V ⁰ _{Rk,c} (≤ R90 baracteristic resis performed accor tacked concrete i bor fire exposure f ed to c _{min} ≥ 300) stance in o ding to the s assumed from one s mm and ≥	$V^{0}_{Rk,c,fi} =$ cracked of decision decision d. The deciside. For c 2 x h _{ef} .	0,20 x V ⁰ concrete method g esign equ fire attac	^D _{Rk,c} (R12 C20/25 un iven in EC ations are k from mo	0) der normal DTA TR 020 given in E0 re than one). DTA TR 0 side the		
The initial value $V^{0}_{Rk,c,fi}$ of the c may be determined by: $V^{0}_{Rk,c,fi} = 0,25$ with $V^{0}_{Rk,c}$ initial value of the ch emperature. Design under fire exposure is p Jnder fire exposure usually cra $\frac{1}{2}$ 2.2.1. EOTA TR 020 covers design for edge distance must be increase in the absence of other national 1,0 is recommended. CELO Q	x V ⁰ _{Rk,c} (≤ R90 baracteristic resis performed accor tacked concrete i bor fire exposure f ed to c _{min} ≥ 300) stance in o ding to the s assumed from one s mm and ≥ e partial sa	$V^{0}_{Rk,c,fi} =$ cracked of decision decision d. The deciside. For c 2 x h _{ef} .	0,20 x V ⁰ concrete method g esign equ fire attac	^D _{Rk,c} (R12 C20/25 un iven in EC ations are k from mo	0) der normal DTA TR 020 given in E0 re than one). DTA TR 0 side the osure γ _{Μ,1}		

Table C5: Displacements under tension loads for static and quasi-static loading

		Anchor size					
CELO Quick fix anchor			M8	M10	M12	M16	
	Ν	[kN]	2,0	3,6	4,8	9,5	
Cracked and non-cracked concrete C20/25 - C50/60	δ _{N0}	[mm]	0,3	0,6	0,6	0,7	
	δ _{N∞}	[mm]	1,8	1,6	2,0	1,4	

Table C6: Displacements under shear loads for static and quasi-static loading

		Anchor size					
CELO Quick fix anchor			M8	M10	M12	M16	
	V [kN]	[kN]	5,7	10,3	13,1	25,1	
Cracked and non-cracked concrete C20/25 - C50/60	δ _{V0}	[mm]	1,7	1,7	2,4	3,2	
	δ _{V∞}	[mm]	2,6	2,6	3,6	4,8	

CELO Quick fix anchor

Performance

Displacements under tension and shear loads

Annex C5

Table C7: Characteristic resistances under tension loads in case of seismic actionDesign acc. EOTA TR 045: Performance Category C1

				Ancho	or size	
CELO Quick fix anchor			M8	M10	M12	M16
Steel failure						
Characteristic resistance BAZ	N _{Rk,s,seis}	[kN]	13	26	38	69
Characteristic resistance BAZ A4	N _{Rk,s,seis}	[kN]	15	24	35	75
Partial safety factor	γMs,seis ¹⁾	[-]		1	,4	
Pull-out failure						
Characteristic resistance in cracked concrete C20/25	NRk,p,seis	[kN]	5	9	12	20
Partial safety factor	γMp,seis ¹⁾	[-]		1,8 ²⁾	•	1,5 ³⁾
Concrete cone and splitting failure 4)			-			
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85
Partial safety factor	γMc,seis ¹⁾ γMsp,seis ¹⁾	[-]		1,8 ²⁾	•	1,5 ³⁾

¹⁾ In absence of other national regulations

²⁾ The installation safety factor of γ_{inst} = 1,2 is included

³⁾ The installation safety factor of $\gamma_{inst} = 1,0$ is included

⁴⁾ For concrete cone and splitting failure, see EOTA TR 045

Table C8: Characteristic resistances under shear loads in case of seismic actionDesign acc. EOTA TR 045: Performance Category C1

				Anche	or size	
CELO Quick fix anchor		M8	M10	M12	M16	
Steel failure without lever arm						
Characteristic resistance BAZ	V _{Rk,s,seis}	[kN]	5,6	11,9	15,4	31,2
Characteristic resistance BAZ A4	V _{Rk,s,seis}	[kN]	8,7	11,2	18,3	31,5
Partial safety factor	γMs,seis ¹⁾	[-]		1,	25	
Concrete pryout and concrete edge fa	ilure ²⁾					
Effective anchorage depth	h _{ef}	[mm]	45	60	70	85
Partial safety factor	γ Mc,seis ¹⁾	[-]		1	,5	
For concrete pryout and edge failure, see						
CELO Quick fix an	chor					
CELO Quick fix an Performance Characteristic tension and shear resistant		c action	-	А	nnex C	6